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Abstract    Inadequate physical activity is leading risk factor in public health and 

inactive people are more vulnerable to have chronic diseases. In addition levels of 

physical activity may be an indicator of health problems in elderly individuals, a 

particular problem in many societies where there is a growing ratio of elderly peo-

ple. Identifying levels of physical activity may have a significant effect on reduc-

ing healthcare costs in the future. As a consequence, finding approaches for meas-

uring the individuals’ activities is a persistent need, in order to provide a view 

about their quality life and to observe their current health status. This may be best 

achieved by using low-cost wearable technology such as accelerometer based iner-

tial sensors. In this work, the angle between the posture of the individual’s trunk 

and the gravity trajectory was used together with the velocity to extract significant 

features from accelerometer data. Two datasets were used, the first had been col-

lected for SPHERE project from an individuals with Parkinson’s disease in their 

home and the second is a public domain benchmark data set. Decision Trees and 

Naïve Bayes classifiers have been used on both datasets. The classification results 

of a small set of activities of single individual from first dataset show that Naïve 

Bayes have high overall accuracy rate of 85%. The second dataset of daily house-

hold activities is used to provide a comparison with one state-of-the-art approach 

in the literature. The result shows that Decision Trees with the proposed features 

outperform the literature approach by having overall accuracy rate exceeded 91%. 
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1 Introduction 

According to the World Health Organization, inadequate physical activity is a 

leading risk factor in public health resulting in more than three million deaths each 

year [1].In addition, a considerable number of studies showed that physically inac-

tive people are more susceptible to have chronic illnesses and have poorer levels 

of health-related fitness when compared to physically active people [2]–[5]. On 

the other hand, the United Nations reports for world population show that there is 

an increasing rate of elderly people around the world [6]. For example, in 2015, 

the reports estimates that people aged 60 or over comprise a 12% of world popula-

tion and this sector of the population has grown steadily by 3.26%  per year[6]. 

These factors cause a substantial impact on healthcare costs [7].As a consequence, 

there is a persistent need for methods to assess the individuals’ activities of daily 

life (ADL) in order to present a view about their quality life and to monitor their 

current health status. A sufficient and effective intervention might then be consid-

ered if early detection of specific health threat factors can be made [8]. New intel-

ligent technologies might enable transparent detection and evaluation of the activi-

ties of daily life [9]. Recently the stage for a noticeable modify in health 

monitoring has been set by the latest advances in wearable technology [8], [9]. 

This technology can use as a way of assessing health and could enable elderly 

people to live independently and in safety at home [8]. 

One of the sensors that widely investigated in most new technology research 

for monitoring of human movement and for assessing healthcare is accelerometers 

[8], [10]. Unfortunately although most of the methods in literature that deal with 

human activity recognition using the accelerometer, they have differences in many 

aspects [10]. These aspects include the number of measured axes in each accel-

erometer sensor, the number and placement of individual sensors, the sampling 

rate, the number of participants, the type and number of activities, computed fea-

tures, and the type (sliding or non-sliding), the design and the size of the filter 

window[10]. These differences, along with the lack of good benchmark dataset, 

make it difficult to compare the new approaches to existing methods. 

The purpose of this paper is to propose an approach for human activity recogni-

tion, apply it to a dataset collected from a small cohort of individuals with Parkin-

son's disease and to compare the proposed approach with a dataset collected from 

unimpaired individuals [10]. 

2 Background 

Interest in collecting and analysing data from individuals in their natural surround-

ings to assist with management and diagnosis of health and healthcare problems is 

growing [10]. To investigate this concept further the SPHERE research project 



(http://irc-sphere.ac.uk) aims to deploy, collect and analyse data from a range of 

sensors in a 100 residential homes in the Bristol area and consider the data analy-

sis and data mining techniques that can be employed to enable this data to be used 

by the individual, their carers, and researchers to monitor healthcare related prob-

lems [9], [11]. The project is nonspecific but healthcare issues are likely to range 

from COPD (chronic obstructive pulmonary disease), Parkinson’s disease, stroke, 

frailty, depression, sleep disorders, and obesity [9].  

Data collection will include body-worn sensors that can operate for up to a 

month without recharging while transmitting key information to the house infra-

structure for data storage and analysis [11]. A key hypothesis is that changes in the 

data characteristics over time will be indicative of health related concerns [9], 

[11]. Thus short-term change may be an indication of a medical emergency such 

as a fall [9], [11]. Long-term changes in the data would be indicative of an ongo-

ing chronic medical problem that may require a change in management, for exam-

ple, a change in the gait pattern of an individual with Parkinson’s disease [9], [11].  

This paper aims to recognise different postures and ambulation for individual 

using the angle between the gravity vector and the posture of the individual’s body 

and using the velocity of data. The successful classification models could help in 

detection of activities of daily life (ADL) in real-time. 

2.1 Related work 

There is a considerable body of work in the literature on human activity recogni-

tion using inertial sensors. Most publications are based on their own dataset which 

is collected using a variety of different methods. Some of this literature are sum-

marised in Table 1 which shows for each method, the conditions of collecting da-

ta, the number of participant subjects, the number of performed activities, the fea-

tures and the algorithms used to classify the collected data. Because of the 

different approaches in the literature, it is difficult to make direct comparisons be-

tween different studies. However, the recent availability of movement datasets al-

lows us the opportunity for limited comparison of our method across a wider set of 

experimental data. 

Key questions are the number of sensors used and type of classification algo-

rithm. The study was done by [12] showed that using one sensor placed on the 

human trunk can be efficient in detecting various types of fall event, with results 

showing up to 96.7% accuracy. However, using more than one sensor improve ac-

curacy in recognising a number of activities of daily life, as shown by [13]. In ad-

dition, [10] explained that every classification algorithm can obtain substantial ac-

curacy for specific activities and consequently, for one method, a number of 

classifiers can be exploited for different activity groups’ recognition. 



Table1. Summary of previous work for activity recognition. 
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[10] 

4 triax-

ial ac-

celero

meter 

& gy-

roscope 

right wrist, 

chest, right 

hip and left 

ankle. 

204.8/19/13 

5 s 

with 

50% 

over-

lap 

minimum ampli-

tude, maximum 

amplitude, mean 

amplitude, vari-

ance of ampli-

tude, spectral 

centroid, band-

width, energy 

and gravitational  

component  of  

the acceleration 

signal. 

Hierarchial 

classifica-

tion using  

ADA, 

kNN and 

SVM 

[14] 

5 biax-

ial ac-

celero

meter 

right hip, 

dominant 

wrist, non-

dominant 

upper arm, 

dominant 

ankle and 

non-

dominant 

thigh 

76.25/20/20 

6.7 s 

with 

50% 

over-

lap 

mean, energy, 

frequency do-

main entropy, 

correlation of the 

acceleration sig-

nals 

Decision 

Tree 

[15] 
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first five compo-

nents of FFT 

analysis 

kNN 

[12] 
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gyro-
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& tilt  

chest -/3/5 
50 & 
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raw data and 

mean 

Suggested 

Algorithm 

for real-

time fall 

detection 

[16] 
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one tri-

axial 

accel-

erome-

ter 

&Nike

+iPod 

thigh  & 

foot 
200/8/4 1 s 

magnitude, 

mean, standard 

deviation, mini-

mum value, max-
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minus max,  max 

minus min and 

energy 

Naive 

Bayseian 

Network 



Sport 

kit 

[17] 

1 triax-

ial ac-

celero

meter 

waist 45/6/12 1 s 

median filtering 

and low pass fil-

tering 

Suggested 

Algorithm  

3 Data source 

In preparation for deployment to residential houses in the Bristol area the Sphere 

project collected data from a small cohort of individuals with Parkinson’s disease 

[18]. Data was collected in the individual’s home over a period of approximately 

1-2 hours during which time the individual was asked to continue his or her daily 

activities as normal [18]. During this data collection period the individuals demon-

strated typical activities [18]. A suite of five accelerometers with sampling rate set 

to 50 Hz was used for data collection, and ground truth captured by video record-

ing the activities [18]. The five accelerometers were worn on the waist at the low-

er back, left wrist, right wrist, left ankle and right ankle [18]. For the work pre-

sented in this paper, only the waist worn accelerometer data was used. The 

accelerometer data was labeled using the ELAN 4.9.3 package to categories eight 

key activities [18], [19]. These were sitting in a chair, standing, sit to stand, stand 

to sit, walking, stair-up, stair-down and turning [18]. For the comparison purpose, 

the proposed method has also been applied on a data called “Benchmark dataset” 

that collected by [10] which available on (http://www.activitynet.org). This dataset 

collected from 19 subjects for 13 activities. These activities are sitting, lying, 

standing, washing dishes, vacuuming, sweeping, walking outside, ascending stairs, 

descending stairs, treadmill running (8.3 km/h), bicycling (50 watt), bicycling 

(100 watt) and rope jumping [10]. 

4 Data Analysis 

The data analysis recognizes that the principal component from accelerometer data 

is the omnipresent 1g field. Thus features relating to angle and magnitude with re-

spect to this field dominate, and movement activities are effectively imposed on 

this data. Data from waist sensor of a single individual with Parkinson’s disease 

was used for preliminary analysis. The data was initially processed by considering 

the principal movements of the individual to be in the ‘sagittal plane’ (i.e. for-

wards and backwards). The angle between the gravity vector and the pose of the 

individual’s trunk was computed using the ‘atan2’ function. The axes that used as 

arguments for ‘atan2’ function are the vertical axis and the axis that point to for-

ward or backward direction. For feature extraction, a non-sliding of 24, 48, 72, 96, 



144, 192 and 240 sample window sizes with 50% overlap and same sizes sliding 

windows was used to determine the best window size and window type. Three fea-

tures were extracted for classification which are mean, standard deviation and en-

ergy. The energy is computed by adding together the sum of the squared values 

for each axis, divided the addition result by three then divided by the number of 

samples. Classification was performed using DTs (Decision trees) and NB (Naïve 

Bayes) separately, and validated using 10 fold Cross Validation method. 

5 Results 

The obtained results from both of the classification methods show that the 48 

sample sliding window has better classification accuracy than the other windows, 

with 79% accuracy for DTs and 85% for NB. Table 1 shows that NB outperform 

DTs in recognition of five activities which are the ambulation acts. While the best 

results for stationary acts gained by TDs. 

Table 2. Classification accuracy (in per cent) for DTs and NB using Parkinson’s data set. 

Activities DTs NB 

Sitting 99.63 96.08 

Standing 98.35 97.69 

Sit to Stand 68.75 75.00 

Stand to Sit 66.67 66.67 

Walking 90.91 95.04 

Stairs-up 87.50 100.00 

Stairs-down 66.67 77.78 

Turning 50.00 75.00 

Overall Accuracy 78.56 85.41 

 

As a result of the success of the ‘atan2’ function, addition analysis was consid-

ered to allow increase the veracity of the data. This was done by considering the 

projection of the gravity vector onto a sphere radius (g). Thus, static and slow 

movements will be characterised by points on or near the surface of this sphere, 

and more dynamic movements will be characterised by signature trajectories 

above or below the surface of the sphere. Figure (1. a, b & c) shows the projection 

of three of the labeled activities sitting, standing, and stand-to-sit. 



 

 

 

Figure 1.a projection of the waist accelerometer sensor data for sitting activity onto the sphere. 

 

 

 

 

 

 

 

 

Figure 1.b projection of the waist accelerometer sensor data for standing activity onto the sphere. 

 

 

 

 

 

 

 



According to this, the use of data velocity will be significantly useful in in-

creasing the accuracy of classification algorithm. This can be achieved by using 

the dot product operation. To examine the features gained using both ‘atan2’ func-

tion and dot product operation and for comparison purpose, a benchmark dataset 

collected by [10] has been used.  

The benchmark dataset was collected using four sensors with 204.8 Hz accel-

erometer and gyroscope from 19 subjects achieved 13 activities [10]. These sen-

sors were placed on right wrist, right hip, left ankle and chest. A sliding window 

of 5 second size has been used in [10] approach. For each sliding window, the to-

tal number of features extracted and used by [10] is 152 features for dynamic ac-

tivities and 12 features for static activities. All of the four sensors have used in our 

work. Both of ‘atan2’ function and dot product operation have applied on the data 

of the four accelerometer sensors. Because of using sensors placed on limbs and 

performing activities which have moving in different directions, all accelerometer 

axes are used with ‘atan2’ function, which result in three values for every accel-

erometer. For feature extraction, a sliding windows of size 204, 408, 612, 816, 

1020 and 1224 sample, which nearly correspond to 1, 2, 3, 4, 5 & 6 seconds re-

spectively, with 50% overlap to find the best window size. For classification, three 

features where extracted for each accelerometer which are mean, standard devia-

tion and energy; and mean for every gyroscope axis and energy for each gyro-

scope. The total number of features used in this work for all the four sensors is 52 

features. Classification was performed using DTs (Decision trees) and NB (Naïve 

Bayes) separately, and validated using 10 fold Cross Validation method. 

The results obtained from both DTs and NB algorithms with the results of [10] 

approach are shown in Table 3. The results show that for DTs the 612 sample 

 

Figure 1.c projection of the waist accelerometer sensor data for stand-to-sit activity onto the 

sphere. 

 

 

 

 

 

 

 



(nearly 3s) and for NB the 1020 sample (nearly 5s) sliding windows have better 

classification accuracy than the other windows, with overall accuracy 91.05% for 

DTs and 79.26% for NB. The results shown in this table and in Table 2 will be 

discussed in the discussion section. 

Table 3. Classification accuracy for 13 activities and overall accuracy for DTs, NB and [10], us-

ing the benchmark dataset. 

Activities 
Proposed 

DTs 

Proposed  

NB 

[10] 

Sitting 95.26 13.19 88.9 

Lying 97.65 95.43 100.0 

Standing 95.10 90.11 89.8 

Washing Dishes 96.88 97.02 98.1 

Vacuuming 77.72 90.61 85.4 

Sweeping 81.80 69.35 89.9 

Walking 97.13 94.38 99.0 

Ascending Stairs 87.59 93.75 95.5 

Descending Stairs 86.30 88.09 95.2 

Treadmill Running 98.62 98.03 100.0 

Bicycling on Ergometer (50 W) 86.51 7.35 69.1 

Bicycling on Ergometer (100 W) 87.36 95.37 53.5 

Rope Jumping 95.69 97.71 100.0 

Overall Accuracy 91.05 79.26 89.6 

6 Discussion 

In this work, two classification algorithms (DTs and NB) have been applied sepa-

rately to examine the usefulness of the proposed method to classify activities for 

an individual with PD; and to compare their results with one state-of-the-art ap-

proach in the literature [10] using a benchmark dataset. The application of DTs 

and NB on the waist sensor data of single individual with Parkinson’s disease 

have shown the advantage of the NB algorithm over the DTs algorithm, with 

85.41% and 78.56% overall accuracy respectively. As outlined in Table 2, from 

the eight activities in the dataset, DTs had the best classification accuracy when 

compared to NB for sitting and standing activities. Whereas, NB outperformed 

DTs in recognition of success for the five dynamic activities. However, perform-

ing these two classification algorithms on a benchmark dataset using four sensors 

(placed on the right wrist, right hip, left ankle and chest) for 19 individuals result 

in outperforming of DTs algorithm over NB algorithm. As shown in Table 3, the 

failure of the NB algorithm was in recognition of sitting, sweeping and bicycling 



ergometer (50) activities, with classification accuracy 13.19%, 69.35% and 7.35% 

for each of them respectively. The reason for these poor results is that the misclas-

sification particularly of SI (sitting), SW (sweeping), and BC50 (bicycle ergome-

ter at 50) by the NB algorithm as shown in Table 4. The uncertainty of NB ap-

pears to be between two stationary acts, [sitting and standing] and between the 

matched repetitive high-velocity acts, [vacuuming and sweeping, bicycling er-

gometer (50) and bicycling ergometer (100)].  

There was a high classification accuracy of DTs so the confusion matrix has 

not been shown. It is possible that this classification accuracy may be due to the 

correlations in features values that are picked up by the rule-based activity recog-

nition of DTs. For instance, the DTs classified sitting and standing as activities 

having different angles between individual's trunk and gravity vector at the hip 

and low velocity at the hip, wrist and ankle sensors. It distinguishes bicycling (50) 

activity from bicycling (100) activity because each one of them involves different 

levels of velocity (moderate and high) at the ankle sensor. Also, it differentiates 

between sweeping and vacuuming, even though both activities show high energy 

in wrist acceleration because the first activity involves different angles in wrist 

sensor. The weaker performance of NB approach may be due to its inability to ad-

equately model such rules. 

Comparing these results with the approach of  [10] it can be noted that although 

the DTs method has an overall classification accuracy that is higher than the re-

sults shown in [10] the latter outperform the DT method in specific recognition of 

eight of the thirteen activities. The better individual recognition results of [10] are 

probably due to the hierarchical approach used. This approach divided the thirteen 

activities into groups and use a SVM for the initial group classification and differ-

ent algorithms to do the subgroup classification. However, for this dataset, this 

approach had a low classification accuracy for sitting, standing, bicycling (50) and 

bicycling (100). In addition, this approach used 152 features for each sliding win-

dow of dynamic activities. While our proposed method uses just 52 features for 

each sliding window. The high number of features could result in more computa-

tional complexity in real-time systems.  

Nevertheless, this method has been applied on two different datasets, one ac-

quired from an individual with Parkinson’s disease and the other from 19 young 

healthy individuals. The results show that the use of a number of sensor with both 

accelerometer and gyroscope have a substantial impact on the classification accu-

racy for all activities rather than the use of single accelerometer sensor. An im-

provement on the proposed method could be achieved by exploiting of number of 

classification algorithms to gather in this method. The use of the combination of 

different classification algorithms applied on the proposed features with different 

window sizes could result in high classification accuracy real-time recognition 

system for activities of daily live (ADL). The difference between window sizes of 

the DTs and NB best results from using both the Parkinson’s and the benchmark 

datasets possibly because Parkinson’s data collected in a home environment while 

the benchmark data collected in a lab. 
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7 Conclusion 

This paper considers the recognition of a small set of activities based on accel-

erometer data from an individual with Parkinson’s disease. A novel feature set is 

considered and a benchmark dataset of daily household activities is used to pro-

vide a comparison. Since accelerometers are primarily in a 1g environment it is 

relatively easy to compute the angle between a sensor worn on the individual’s 

trunk and the gravity trajectory, and this together with the velocity are significant 

features for recognising person activities using accelerometry. A decision tree 

classification method with sliding window of size nearly 3 second was shown to 

be significantly better than a Naïve Bayes approach. This study also shows that the 

inclusion of data from a number of sensors placed on different part of subject 

body, especially wrist and ankle, in classification process would lead to enhancing 

the results, particularly for ambulation acts. A multi-level classification system 

that uses more than one classification algorithm with different window sizes, will 

be exploited in future work to increase recognition accuracy.  

Knowledge of the underlying cause of the data should lead to the higher veraci-

ty of information transmitted at a lower rate. This is particularly important in this 

application where data must be transmitted from the individual to a base station 

through a low energy channel at a low bit rate.  
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